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Table III. Evaluation of e for CF2 at 249 nm 

[C2F4Jf, 
mM 

0.0169 
0.164 
0.0197 

0.117b 

0.2726 

0.200b 

',. 
ms 

1.6 
0.6 
1.6 

0.1 
0.2 
0.2 

(OD),, 

0.0221 
0.126 
0.0236 

0.280 
0.334 
0.311 

10"4 X 
slope,0 

s-' 

1.5C 

1.1" 
1.8C 

1.1" 
1.0d 

1.0d 

10"' x 
2k2, 
S"1 

M"1 

3.1 
3.3 
4.0 

3.9 
3.4 
3.7 

e(eq21), 
M"1 cm"1 

874 
921 
938 

1021 
1043 
1156 

a Slope of (OD)"1 vs. r when r > ?,. Slope = 2k JeI. b Experi
ments with CDClF2. Other experiments involve CHClF2.

 0I = 
2.36 cm. dl= 3.26 cm. 

at low £absd should be rather typical. 

Appendix 
Molar Extinction Coefficient of CF2 at 249 nm. While there 

was only marginal need to know the tof CF2 for the interpretation 
of time lags, a semiquantitative value was needed to show that 
after V-T relaxation, reaction indeed becomes thermal reaction. 
It is known that t changes slowly with 7".45 However, for the 
present purposes it seemed adequate to treat« as constant. On 
that basis t could be derived from (a) a plot of optical density 
(OD) at 249 nm vs. time and (b) the amount of C2F4 produced. 
At 249 nm, CF2 is the only component of the reacting system 
whose optical absorption is significant. The rate law for C2F4 

formation is d[C2F4]/At = Zc2[CF2]
2, where Ic2 is nearly inde

pendent of r.14-15'44-46 

After a sufficiently long time Z1 has elapsed, the gas temperature 
becomes low enough (<900 K) so that reversible decomposition 
of CHClF2 (eq 2 and 3b) is practically quenched, according to 
available kinetic data.14,15 Thus, when t > th the sole reaction 
is (3a). The condition t > T1 can be recognized experimentally 
because the decrease of OD with t then follows second-order 
kinetics; the slope of the straight-line plot of (OD)-1 vs. t equals 
Ik1JtI where / is the optical path length of the UV beam. 

This paper presents an effort to find an effective TV-electron 
Hamiltonian which might give some information about several 
states of the N-electron systems. Such information is especially 
desired when the lowest states become nearly degenerate and the 
efforts to improve a prefered single determinant (as done in the 
Hartree—Fock scheme) seem rather arbitrary. ir-Electron systems 
have been chosen as a test case for a strategy consisting of building 
an effective VB-type Hamiltonian restricted to a class of VB 
configurations, and taking benefit of the powerful tool known as 

Let [CF2], denote [CF2] at t = tx and let [C2F4Jf denote the 
final C2F4 concentration. The initial [C2F4J = 0, and when / > 
tx further reversible formation of CF2 from CHClF2 is negligible. 
We may therefore write (20). Change of variable to OD and 

2[C2F4]f = [CF2J1 + CU2k2[CF2]
2 d/ (20) 

rearrangement yields (21). (OD)(| and Ik2JtI are known from 

t = [(OD),, + (2k2/tl)j\0D)2 d(]/(2[C2F4]f /) (21) 

the plot of (OD)-1 vs. t when t > /,. (OD)2 dt is evaluated by 
numerical integration of optical density data for 0 < t < ?,. Given 
/ and [C2F4Jf, t can therefore be determined. 

Results for several experiments are listed in Table III. Precision 
of 10% is attained. The accuracy is lower, however, because the 
period of integration 0 < / < T1 includes the period of mixing of 
irradiated with nonirradiated gas when the UV path length / is 
not well defined. Final averages are e (base 10) 1000 ± 200 cm-1 

M-1 at 249 nm (monochromator FWHM ~ 2 nm) and Ik2 = 
(3.6 ± 0.7) X 107 s'1 M"1 at ~800 K. 

Registry No. CHClF2, 75-45-6; CDClF2, 1495-14-3; C2F4, 116-14-3; 
CF2, 2154-59-8. 

(49) Professor Colin Steel has obtained a particularly simple derivation of 
eq 1. Consider collisional V-V exchange according to (22). This is a 

A' + B ^ A + B* (22) 

state-to-state process only for vibrational states. Translational and rotational 
energies follow a statistical distribution dependent on the TfR temperature 
T. Hence kt and k, are rate constants dependent on the TjR temperature T 
of the ensemble, and k;(T)/k,(T) = exp(-[£B - EA]/kT). Let 7V.A and 7"V,B 
denote "temperatures" defined by the relative populations A*/A and B*/B, 
respectively. At thermal equilibrium (eq) TVA = TWB = T. Thus ([A*]/ 
[A])„ = exp(-EA/kT) and ([B*]/[B]) = exp(-EB/kT). The V-V steady 
state (ss) is defined so that WI) (^ ] [B] ) , = kt(T)([A][B*])a. Further
more, ([A*]/[A])„ = exp(-EA/kTVA) and ([B*]/[B])„ = exP(-£B/*7v,B)-
Thus in the steady state, exp(-EB/kTVB)/exp(-EA/kTy A) = exp(-[£B -
EA]/kT), which reduces to (1). 

the "quasi-degenerate many-body perturbation theory".1 The 
QDMBPT approach may be used first as a numerical tool for 
searching several quasi-degenerate roots in ab initio CI problems.2 

It may also be used to treat in a rational way the effect of a 

(1) B. H. Brandow, Rev. Mod. Phys., 39, 771 (1967) See also J. des 
Cloizeaux, Nucl. Phys. 20, 321 (1960); I. Shavitt and L. T. Redmon, J. Chem. 
Phys., 73, 5711 (1980). 

(2) D. Hegarty and M. A. Robb, McI. Phys., 37, 1455 (1979). 
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sublying core on the valence electrons through the building of 
effective valence operators; most of the conceptual applications3 

of QDMBPT are concerned with the treatment of the tr-electron 
effect on the ir systems of conjugated hydrocarbons or of the core 
inner shells on the valence electrons of atoms and diatoms. The 
present use of this perturbative approach is different since it does 
not tend to reduce the number of electrons but to reduce the size 
of the VB-CI problem. 

For excited states and especially for nearly degenerate situations, 
extensive CI must follow the variational SCF single-determinant 
approaches. As soon as CI is considered as necessary, one may 
wonder whether the old VB-type approaches are not competitive. 
The main defects of the VB method are as follows: (i) the use 
of nonorthogonal basis sets which makes the computation difficult; 
(ii) the lack of evident partitioning in the CI matrix4 (the double 
(or quadruple) substitutions processes allow such a partition in 
the classical HF + CI procedure). 

The first difficulty disappears when one may introduce a 
transferable orthogonal basis set as assumed in the 7r-electron 
problems, due to the weak overlap between neighboring 2pz atomic 
orbitals.5 The second problem, the separation between neutral 
and ionic (and further on between mono, di, ... ionic) excited 
configurations, allows the introduction of some structure in the 
VB matrix. When analyzing the VB content of the MO wave 
functions, Hiberty noticed that the HF approximation greatly 
overestimates the weight of the ionic configurations (i.e., the 
fluctuation of the dipole moment) with respect to the "exact" (full 
CI) wave function which, for the lowest states, concentrates on 
the neutral VB components.6 In view of these results, one might 
consider the set of neutral configurations as a nearly degenerate 
subspace spanning some sort of zeroth-order descriptions for the 
lowest states of the molecules. This paper applies the quasi-de
generate many-body perturbation theory1 for treatment of the 
neutral states, building an effective Hamiltonian restricted to the 
neutral configurations perturbed by the action of the ionic states. 
The usual application of the perturbative many-body theory 
consists in perturbing a single H.F. configuration to any order,7 

while we start from a subspace and build an effective Hamiltonian 
for this subspace using perturbation theory to establish its 
structure. 

The model is essentially governed by topology but in a more 
complex manner than the Hiickel one, since it is an ^-electron 
effective Hamiltonian. Instead of giving an approximation of the 
(N- l)-electron states (as do the monoelectronic HF or Hiickel 
Hamiltonians through Koopman's theorem), it gives the lowest 
part of the /V-electron spectrum. Limited to the second-order and 
the tight-binding approximation, the model gives a simple pro
cedure to decide the multiplicity of the lowest state and a rationale 
for understanding the topological determination of the preferred 
multiplicity. 

When applied to further orders, the model allows one to in
troduce nonadjacent interactions and cyclic specific contributions, 
using two parameters only. When compared to the exact solutions 
of the Pariser-Parr Hamiltonians for a series of 20 polyenes, our 
model gives, through diagonalization of small matrices, quanti-

(3) For a review see B. H. Brandow, Int. J. Quantum Chem., 15, 207 
(1979); S. Iwata and K. F. Freed, J. Chem. Phys., 61, 1500 (1974); Chem. 
Phys. Lett., 28, 176 (1974); / . Chem. Phys., 65, 1071 (1976); Chem. Phys. 
Lett., 38, 425 (1976); D. Mukherjee, R. K. Moitra, and A. Mukhopadyay, 
Pramana, 9, 6 (1977); H. Sun and K. F. Freed, Chem. Phys. Lett., 78, 531 
(1981). 

(4) G. Rumer, Gotting Nach., 337 (1932); L. Pauling and G. W. Wheland, 
J. Chem. Phys. 1, 62 (1933); O. Klement, O. Mader, and F. S. Huwigler, 
HeIv. Chim. Acta, 43, 2172 (1960); H. Nam-Tran and Ch. de Reyff, J. Chim. 
Phys., 77, 979 (1980). 

(5) For a good review of the successes of ir models see L. Salem, "The 
Molecular Orbital Theory of Conjugated Systems", W. A. Benjamin, New 
York, 1966. 

(6) P. Hiberty, Thesis, Orsay, France, 1977. In butadiene the weight of 
neutral components is 0.23 at the SCF level and 0.61 after CI; in benzene their 
weight is multipled by a factor 4 under CI. 

(7) Such as in the Moller-Plesset Perturbation Theory (C. Moller and M. 
S. Plesset, Phys. Rev., 46, 618 (1934)) now widely used in ground- and 
excited-state calculations of molecules. 

tative agreement with the full CI, as will be shown in the following 
paper. 

I. Structure of the VB-Type CI Matrix 
For an /V-electron N-AO problem, one considers the TV-electron 

determinants built in the minimal basis set; these determinants 
may be neutral (for instance, \abcdej\ (S2 = I)) with one electron 
per atom or ionic (for instance, \abbcdf\ (S2 = 0, [B-E+] pair)) 
with positive and negative atoms. Due to the [S2, H] = 0 com
mutation, one may consider independently the various S2 values, 
which run from 0 (or >/2) to N/2 (or (TV + l)/2). The following 
features are valid, whatever the S2 eigenvalue. 

(i) The neutral determinants may be viewed as a block of lower 
energy than the ionic ones. 

(ii) Their energies only differ through exchange integrals. These 
exchange integrals may be neglected in the ZDO approximation,8 

but the exchange integrals between bonded atoms (K) will be 
considered for deductive purposes. The Sz = N or (N + l ) /2 
determinant (all spins parallel) is unique, and its energy will be 
taken as the reference energy E0. It allows n exchange processes 
between adjacent atoms, if n is the number of bonds on the 
chemical graph, and therefore -nK appears in the reference energy 
is0. When a and /3 spins are simultaneously present in the de
terminant, exchange becomes impossible between adjacent atoms 
of different spins. Let us call np' the number of spin alternants 
along chemical bonds (np' < n) for determinant /; then the energy 
of this determinant is equal to E' = E0 + nf'K. For instance for 
cyclobutadiene (S2 = 0) 

EI=E° + 2K E1^E"+ 1K 

(iii) The neutral determinants only interact through exchange 
integrals, since they differ through spin permutations. If one 
neglects nonadjacent exchange integrals, two determinants / and 
J interact if they only differ through a spin permutation process 
on two adjacent atoms. For instance between 

1 1 1 . . , I l l 
a b e d a b e d 

For a given line (or column) of the matrix, one extradiagonal 
exchange integral appears (with a negative sign) for each spin 
alternation between bonded atoms of the determinant I. Therefore 
the line (or column) I of the matrix bears nv' extradiagonal ex
change integrals (with negative signs) as well as nt' exchange 
integrals on the diagonal. 

(iv) The neutral determinants interact with ionic determinants. 
In the well-known "tight-binding" approximation, they only in
teract with monoionic determinants where the [+-] pair appears 
on bonded atoms; such ionic states are obtained from a neutral 
determinant by a charge transfer of one electron from one atom 
to a bonded atom. For instance, let us consider the interaction 
between a neutral determinant, / (\abcde\), and a singly ionized 
[A-C+] determinant 

(aabde\H\\abc~de\) = HaIF1 Ic) 
N 

= -(a\h + E Jj~KjSS(j,c)\c) 
/=1 

(8) R. Pariser and R. G. Parr, / . Chem. Phys., 21, 466, 767 (1953); J. A. 
Pople, Trans. Faraday Soc, 49, 1375 (1953); I. Fisher-Hjalmars, Adv. 
Quantum Chem., 2, 25 (1965). 
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and the integrals, for equal bond lengths, may be supposed to be 
transferable since they only differ through tricentric exchange 
integrals such as <a|A^|c). In the same molecule the [A-B+] 
transfer gives 

(aabde\H\\abcde\) = {aabde\H\\abcde\) + (a\Kb\c) - (a\Ke\c) 

The spin repartition on the atoms which are not involved in the 
charge transfer is supposed to have no influence on the charge-
transfer integral, which will be labeled F. 

The neglect of charge-transfer integrals between nonadjacent 
atoms and the neglect of bielectronic double charge transfer are 
implied by the Pariser-Parr ZDO type Hamiltonian8 

H?? = LhMap
+aq + gMap

+aq
+aqap 

Starting from a given neutral determinant, /, one may find 2np
l 

ionic determinants interacting with it; for each spin alternation 
on a chemical bond in /, one may consider two ionic determinants 
of opposite dipoles. For instance the determinant for a linear 
molecule 

1 1TTT 
a b c d e 

interacts with 

\abbde\ [B-C+] 

and with 

\accde\ [B+Cl 

There are therefore 2np
l extradiagonal matrix elements on the line 

I in the block between neutral and ionic determinants. 
(v) Among ionic determinants, the monoionic determinants 

between adjacent atoms have the lowest energy. If an ionic 
determinant [K+R-] is obtained by a (K - • R) charge transfer 
from a neutral determinant, /, one may approximate 

Z-(K+R-) -E, = IK-AK- Jb 

where I is the ionization potential, A the electroaffinity, and Jb 

the Coulombic integral, which is larger when K and R are ad
jacent. The doubly ionic determinants [A"B+,D+E~] have higher 
energies since they require two ionizations. 

(vi) A given monoionic determinant (such as \aacdef\ [A-B+]) 
interacts with two neutral determinants which are obtained by 
placing either the a-spin electron or _the /J-spin electron on the 
positive center (in our example with \abcdef\ and \abcdef\) without 
changing the spin distribution on the other atoms and with 
(nonadjacent) monoionic determinants, in which either the neg
ative or positive center has been moved to an adjacent atom. For 
instance, [A-B+] interacts with [A-C+] 

{aacdef\H\\aabdej\) = (^F+~\b) 

where F+' is now the Fock operator relative to an ionic deter
minant. In the Pariser-Parr approximations, this integral reduces 
to its monoelectronic part (c\h\b) - hcb and is taken equal to the 
charge-transfer integral occurring between neutral and ionic 
determinants. 

In general these determinants are nonadjacent monoionic de
terminants except for the triangular chemical graphs. For 

B 

/ \ 
A -C 

[A-B+] may interact with [A-C+] and [A-C+] interacts with 
neutral determinants, but this is an exception. 

A monoionic determinant also interacts with dionic determinants 
obtained by a second charge transfer between adjacent (previously 
neutral) atoms. For instance, [A-B+] \aacdef\ interacts with 
[A-B+D+E-] \aaceef\ through -hde. These determinants have two 
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Figure 1. Schematic structure of the VB-CI matrix; F and K respectively 
indicate the existence of charge-transfer and exchange-only integrals in 
the off-diagonal block. 

independent adjacent charge transfers. 
(vii) The dionic determinants interact among themselves and 

with trionic determinants etc, but these determinants have higher 
energies, and if a zeroth-order wave function is built from the 
neutral states, the adjacent monoionic determinants will be in
volved in the second order of energy, while the nonadjacent mo
noionic determinants and dionic determinants with two adjacent 
zwitterions are involved in the fourth order only, trionic deter
minants occurring only at the sixth order of perturbation etc (cf. 
Figure 1). 

An analogy with the correlation many-body problem appears, 
a charge-transfer monoexcitation playing the same role as a double 
excitation process. The N consistence problem, which is so im
portant in the many-body problem, must be kept in mind as well 
as the so-called linked cluster theorem.9 The main difference 
now is that we no longer have a zeroth-order determinant (the 
Hartree-Fock solution) but a zeroth-order subspace (the neutral 
states). 

II. Structure of the Effective Hamiltonian Restricted to 
Neutral Determinants 

If the quasi-degenerate space is limited to the neutral deter
minants, which only differ by the spin part of the wave function, 
the effective Hamiltonian resulting from the application of 
QDMBPT to this zeroth-order subspace can only introduce ef
fective spin operators, allowing for the exchange of the spins of 
two atoms, four atoms, etc. The proposed Hamiltonian therefore 
belongs to the general class of effective magnetic or Heisenberg 
Hamiltonians, which are quite popular in solid-state physics (see, 
for instance, ref 10). 

The Second-Order Quasi-Degenerate Many-Body Perturbation 
Theory.1 Let us suppose that the lowest states of our problem 
have large components on the neutral determinants (in other words 
that they are neutral states in the sense of VB theory). Then the 
space of neutral determinants (for a given value of S2) may be 
considered as a nearly degenerate subspace. One might first 
diagonalize the VB matrix restricted to those determinants, which 
leads to a set of orthogonal multiconfigurational wave functions 

*m = ZCmKd>K PsHPs\tm) = £mVm> 

(9) K. A. Bruckner, Phys. Rev., 100, 36 (1955); In the "Many Body 
Problem" (les Houches, 1958), Dunod, Paris, 1959. J. Goldstone, Proc. R. 
Soc. London, Ser. A, 239, 267 (1959). 

(10) C. Herring, "Magnetism", Vol. HB, G. T. Rado and H. Suhl, Eds., 
Academic Press, New York, 1966. 
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where Ps is the projector on the neutral determinants, and perturb 
independently these wave functions as done in the CIPSI11 or the 
MRDCI12 formalisms. For the VB problems Cantu et al.13 

followed this procedure in their valence bond perturbation 
treatment. Kirtman and Cole14 also derived a perturbation 
treatment of a single optimized VB configuration. An alternative 
approach consists of applying the quasi-degenerate many-body 
theory.1,3,15,16 The method consists of building an effective 
Hamiltonian, restricted to the zeroth-order subspace;17 the matrix 
elements of this Hamiltonian are obtained through a perturbation 
expansion of the interaction between the zeroth-order block and 
the remainder of the CI matrix; when performed to infinite order 
and provided, the perturbation expansion is convergent and the 
diagonalization of the effective Hamiltonian will give the exact 
energies and the correct components of the exact wave functions 
in the degenerate zeroth-order space. Let us suppose for instance 
that H0 is such that all determinants have the same zeroth-order 
energy E0

0. Then for the second order, / and J £ S, 

(I]W11^]J) = (I\H\J) + E 
(I]H]K)(K]H]J) 

(D 

The diagonal terms Hu
e!f of the matrix are perturbed in a classical 

manner by the determinants which do not belong to the degenerate 
subspace S. The I-J off-diagonal terms are modified under the 
influence of the determinants K which simultaneously interact 
with / and J. The perturbation development may be extended 
to higher orders, and diagrammatic representations of the series 
have been proposed.1,15'16 

As a first step one may consider the content of the second-order 
effective Hamiltonian which immediately results from the points 
(i-v) of the preceding section. The diagonal terms are given by 

H1 = E0 + np'K -* H11'" = E0 + np'{K - 2F2ZAE) (2) 

since each neutral determinant / interacts with 2«p' monoionic 
determinants resulting from charge transfers on the nv

l spin al
ternating chemical bonds of /. 

Each monoionic determinant between bonded atoms [B+C-] 
interacts with two neutral determinants (cf. point vi) which are 
obtained by changing the cc pair into be or be, and therefore 
off-diagonal contributions appear between two determinants which 
only differ by a spin exchange between two bonded atoms, i.e., 
at the positions of the H° matrix which already involved a(-K) 
integral. One may notice that the [B-C+] monoionic determinant 
equally contributes to the same matrix element as does [B+C"] 
and that the (I]H]K)(K]H]I) product is of negative sign 

/ = ]abcdej] J = \abcdej] K = \abbdej] 

(I]H]K) = -(c]F]b) = -F (K]H]J) = (b]F]c) = F 

Then in the effective matrix, each nonzero off-diagonal element 
is transformed according to the following rule Hn = -K -*• Hj/f{ 

= -K + IF2/ AE, where all adjacent monoionic determinants are 
assumed to lie at an energy AE above the neutral determinants. 
In other words the second-order influence of the ionic determinants 
changes the CI matrix restricted to the neutral determinants into 
an effective CI matrix where the exchange integrals are changed 
into effective exchange integrals reflecting the possible electron 
jumps between adjacent atoms occupied by different spins 

(11) B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. Phys., 58, 5745 
(1973). 

(12) R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta, 35, 33 
(1979), 39, 217 (1975). 

(13) A. A. Cantu, D. J. Klein, F. A. Matsen, and T. H. Seligman, Theor. 
Chim. Acta, 38, 341 (1975). 

(14) B. Kirtman and S. J. Cole, J. Chem. Phys., 69, 5055 (1978). 
(15) V. Kvasnicka, Phys. Rev. A, 12, 1159 (1975). 
(16) G. Hose and U. Kaldor, J. Phys. B, 12 (23) 3827 (1979). 
(17) It may be related to Lowdin's partitioning technique: P. O. Lowdin, 

J. Chem. Phys., 19, 1396 (1951); J. Math. Phys. (N.Y.), 3, 969 (1962). 

K^ K*n = K-2F2ZAE 

The effective exchange integral has a negative sign as soon as 
2F2IAE > K. Its represents the local "superexchange" mechanism 
proposed by Anderson18 to interpret the antiferromagnetic 
properties of solids and organometallic compounds.10,19 

Examples. In order to make clearer the building of the effective 
matrices, one may consider the four-electron problem. In the 
following, the compact notation given in eq 3 will be used. 

gkl ~ KkI 2Fkl
2/AE (3) 

The quintuplet (Sz = ±2)]abcd\ or \abcd] is unique, and its 
energy is taken as zero. 

The Sj = ±1 matrices have four components. They necessarily 
involve, besides the S2 = ± 1 components of the previously men
tioned quintuplet, three triplets. The matrix 

\abcdl \abcd\ \abcd\ 

Kab ^" Kac + Had ~~Kab ~%ac 

%ba + Sbc + Zbd ~Zbc 

Kca + Kcb + Zed 

\abcd\ 

-Had 

-Xbd 

-Red 

Had + 8bd + Scd 

has the same structure as the Huckel matrix (and this is a general 
statement for Sz = ±(/V/2 - I)), but the diagonal elements are 
not identical and they depend on the number of spin alternants 
in chemical bonds. The matrix may be specified for the linear 
problem 

a b e d 

(butadiene) 

H S 0 0 

2K -g 0 

2K -K 

the solutions of which are 0 for the quintuplet, +#(2 - \fl) for 
the antisymmetric triplet, 2g for the symmetric triplet, and 

+g(2 + y/2) for the antisymmetric triplet 

for the cyclic structure (cyclobutadiene) 

2g K 0 g 

2g K 0 

2K K 

2K 

the solutions of which are 0 for the symmetric quintuplet, 2g for 
the doubly degenerate E triplet, and Ag for the B,g triplet 

for the nonalternant structure 

c 

-K 

Ig 

0 

-g 

2g 

0 

-K 

-K 

2K 

the solutions.jof which are 0 for the quintuplet,,? for the antisym
metric triplet, 3g for the symmetric triplet, and Ag for the antisym
metric triplet 

for the alternant helix-type structure 

(18) P. W. Anderson, Phys. Rev., 115, 1 (1959); Solid State Phys., 14, 
99 (1963). 

(19) P. J. Hay, J. C. Thibeault, and R. Hoffmann, J. Am. Chem. Soc, 97, 
4884 (1975). 

file:///abcdej
file:///abbdej
file:///abcd
file:///abcdl
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a ' "d 

g -g 0 0 

3g -g -g 

K 0 

g 

the lowest triplet of which is symmetrical with a Ag energy 

The S2 = 0 matrix has a C4
2 = 6 dimension and the form 

\abcd\ \ab7d\ bbcdl \abcd\ \abcd\ 

Zg{j ~Sbc —%bd "Sac ~8ad 

''' Zg -gcd -gab ° 

Zg 0 -gab 

Zg Scd 

Zg 

\abcd\ 

0 

^ ? ad 

~~8ac 

Sbd 

-Sbc 

and the back movement to a neutral state requires two more steps 
(fourth order). 

A third-order process is possible if the second state also is an 
adjacent monoionic configuration which requires the fragment 
to be triangular 

diagonal 

off-diagonal 

However other processes are possible which involve a spins instead 
of the /3 spins in the cyclic movement and therefore have opposite 
signs such as the following sequence which cancels the preceding 
contributions 

When specified for each structure, it gives the lowest solutions 

linear cyclic nonalternant helix 
S (2 + sjl)g 6g 5g Ig 
T (2+s/2)g Ag Ag Ag 

This second-order N electronic Hamiltonian is an Heisen-
berg-Dirac Hamiltonian since it only implies an effective exchange 
integral. As will be seen in the next section, higher order terms 
no longer enter into the Heisenberg scheme 

(4) 

The theoretical implications of this very simple model will be given 
in the following paper. 

III. Higher Order Corrections 
(1) Pedestrian Approach. The role of corrections besides order 

two was examined through a rapid analysis of the structure of 
the CI matrix (Figure 1). 

The monoionic determinants corresponding to the charge 
transfer between bonded atoms were responsible for the second-
order contribution; as they only interact through negligible ex
change integrals, there is no important third-order correction. 

The fourth-order corrections will imply the two categories of 
determinants which interact with the adjacent charge-transfer 
determinants, namely, (i) the nonadjacent charge-transfer mo
noionic determinants (for instance, [B+C"] \accdef\ interacts with 
[B+D"] \acddef\ if C and D are bonded, through an F integral) 
and (ii) the dionic charge transfer determinants in which a second 
charge transfer takes place on another pair of bonded atoms (for 
instance, [B+C"]\accdej\ interacts with [B+C", E+F-]\accdff\). 

A simple picture of higher processes can be used, which follows 
the physical electron jump along the chain. Second-order con
tributions are simple back and forth processes. 

/S" diagonal 

off-diagonal 

Third-order corrections are not efficient in noncyclic fragments 

neutnil 
[1,2,3] 

adjacent monoionic distant monoionic 
[1-2*] [l-3+] 

The triangular cycles do not introduce specific third-order cor
rections. (In the same way one may demonstrate that cyclic fifth 
order corrections cancel on pentagonal cycles, etc ...). 

Fourth-order corrections will introduce some nonadjacent ef
fective exchanges; turning back to the former three-atom noncyclic 
fragments, one may complete the process toward a neutral de
terminant as 

nonadjacent 
monoion 
.. . s 

adjacent 
monoion adjacent " 

monoion 

- • to 

These three-atom chains contribute respectively (a) to a diagonal 
term, (b and c) to an exchange between adjacent atoms, correcting 
its second-order value, and (d) to previously neglected exchange 
between [1-3] nonadjacent atoms. 

Cyclic fragments may introduce fourth-order four-body cor
rections such as 

monoionic diionic monoionic 

This peculiar process through a dionic intermediate introduces 
a double-spin permutation. 

(2) General Equations. From a more theoretical point of view, 
higher order corrections may be obtained by using the proper 
recurrence equations. Several studies were performed to establish 
equivalent forms of these equations.1^15'16 The formalism used in 
this work is due to Levy.20 

If P is the projector on the degenerate subspace £0, T the 
evolution operator, and H the effective Hamiltonian and if 

m = E^ 
the following relations can be stated 

TPip = \p HPii = EP\P (5) 

The total Hamiltonian H can be splitted into 

H = H0+ V (6) 

since the second step is either a neutral or a nonadjacent monoion where H0 is chosen in such a way that 



3026 J. Am. Chem. Soc, Vol. 104, No. 11, 1982 Malrieu and Maynau 

[H0,P] = 0 (7) 

The operators 
expansion of V 

T and H can be written in the form of a power 

TP = E TnP 

H = EHn 

(8a) 

(8b) 

One gets at the nth order 

Tn\I) = Q(E1 - H0V(VT^1- "t T11PVT^1)II) (9a) 
P=\ 

Hn = PVTn-S (9b) 

where Q = I - P and |/> is a determinant belonging to the qua
si-degenerate subspace £0. One may notice that in this expansion 
the last term of the second member of eq 9a goes through in
termediate states belonging to £0, because of the presence of the 
P operator in this term. In our simple model, where (I\V\J) = 
0 when / and J are neutral determinants, the equations for the 
fourth- and sixth-order terms reduce to 

(10a) 

fourth order 

(I\H,\J) = 

sixth order 

d\H6\J) = 

^ (IVaVQVyVJ) 

aAy AEaQy 

^ (IVaVKVQVJ) 

affK AEaQAEa 

(IVaVQVyVhV1VJ) 

AEaQyhe 
-

a0y&K\ 

(IVaVKVQVyVhVJ) \ 

AEa 

1 

AEaQyh 

(IVaVQVKVyVhVJ) I \ 

AEaQyh \~AEa + AEQ 

1 (IVaVQVyVKVdVJ)I 

AEaQyS \ AEa 

) 

AEQ + AEy ) J 
(IVaVKVQVLVyVJ)I 1 1 

AEaQy V AEa2 AE1 a0 ) 
(10b) 

In these formulas, the product (Z]^a){a^/J...|c>(v|F|7> is written 
(IVa...vVJ). The italic letters represent states that belong to £0 

(i.e., in this case neutral states) and the greek ones are not states 
of £0 (!•£•> ionic ones). The product AEaAEQ...AEv is written 
AEaQ...v. 

In both fourth- and sixth-order formulas, a first term, for which 
all intermediate states between (T] and \J) are ionic, may be 
considered as the principal term of the development. In the fourth 
order, another term appears, with an opposite sign, that will be 
responsible for the cancellation of the contribution corresponding 
to disconnected graphs. The other terms appearing in the 
sixth-order equation are more numerous and are then more dif
ficult to interpret but they play the same role. As in the case of 
fourth order, the three possibilities for the K neutral state to appear 
in the sequence are of opposite sign. The last term represents the 
only possibility to place two neutral states in the sequence. Its 
sign is opposite to the sign of the three preceding terms. 

(3) Linked Cluster Rules. Our application of the QDMBPT 
differs from the original Brandow scheme1 which implied that all 
the determinants with variable occupation numbers «, of the 
so-called "valence" MO's were included in the degenerate subspace. 
Here we only have valence MO's and only consider a certain type 
of occupancy (n, = 1, V,) for the degenerate subspace. This is 
a peculiar case of the "general model space" formalism proposed 
by Hose and Kaldor.16 

Most of the treatments assume a zeroth-order monoelectronic 
Hamiltonian (of the Moller-Plesset type7) 

H0 = Htpfa, (H) 

and this assumption plays an explicit role in the generalization 
of the linked cluster theorem9 to the QDMBPT formalisms,1'1516 

through the denominator additivity which allows the appropriate 
factorizations. One may notice that in the Moller-Plesset scheme 
our ionic determinants would be degenerate with the neutral ones 
and our model would break down. As noted by Brandow,21 the 
use of a bielectronic H0 operator is necessary to derive effective 
spin couplings. 

The energy difference between the ionic and neutral states is 
due to the electronic repulsion between two electrons on the same 
center, and our zeroth-order Hamiltonian, of Epstein-Nesbet 
type" 22 

H0= L\D(I\(I\H\I) 
i 

(12) 

is bielectronic in nature. This remark prevents the use of the usual 
QDMBPT diagrammatic expansion1 and the direct use of the 
linked cluster theorem. Special diagrams might be defined for 
our problem, and it would be possible to show the existence of 
an appropriate linked cluster theorem, which results from the 
denominators additivity, the transition energy to a doubly ionic 
determinant being the sum of the transition energies to the mo-
noionic ones, as results from eq 12. 

We shall simply illustrate the unlinked cluster cancellations 
through fourth order by considering two independent charge-
transfer processes a —>• b and c—*d. The processes through the 
(bbdd) dionic states, are supposed to lie at 2AE above the neutral 
states 

\o *> \>> !*> lJ> 

both contribute to the diagonal term of the K = \abcd\ determinant 
through the factorization 

-FJFJ/AE* 

but the last term of eq 9a contains a term 

-(I\V\a)(a\V\I)(I\V\Q)(Q\V\J)/AEi 

of opposite sign to Fab
2Fcd

2/A£3 which cancels the preceding 
contribution. The first term corresponded to an unlinked process 
since the back and forth movements of the two electrons were 
independent in separate fragments. 

The formal demonstration of the linked cluster theorem for our 
model would be tedious; it results in a very simple rule when the 
tight-binding hypothesis is assumed; the only contributions to the 
effective Hamiltonian are concerned with the connected fragments 
of the molecular graph. 

As a direct consequence, it is clear that nth-order contributions 
are at most concerned with n chemical bonds. It will be shown 
below that they imply n chemical bonds only if these n bonds form 
a circle. At order two, the only fragment is obviously one segment 
with a back and forth electron jump on it. In fourth order, the 
necessity of starting with a neutral determinant and of getting 
to another neutral one at the fourth step imposes two forward and 
two backward jumps (since each electron movement can be 
considered as a charge transfer that must be followed by another 
charge transfer toward the inverse direction) as in 

This implies the largest connected fragment to be a two-bond 
fragment. On the contrary, in the case of cyclic fragments, the 

(20) B. Levy, Proceedings of the fourth seminar on computational methods 
in Quantum Chemistry, Orenas, Sweden, 1978. 

(21) B. H. Brandow, Adv. Phys., 26, 651 (1977). 
(22) P. S. Epstein, Phys. Rev., 28, 695 (1926); R. K. Nesbet, Proc. R. Soc., 

London, Ser. A, 230, 312, 322 (1955). 
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Table I. The Fourth-Order Hamiltonian of the 
Methylenecyclobutadiene, in Units F4 /AF3 a 'b 

12 

14 

13 

-20 
36 

14 

12 
-20 
22 

15 

0 
2 

-8 
14 

23 

12 
-20 
0 
0 
14 

24 

-20 
40 

-20 
0 

-20 
48 

25 

2 
0 
0 
0 
2 

-8 
12 

34 

0 
-20 
12 
0 
12 

-20 
0 
22 

35 

0 
2 
0 

-8 
0 
0 
0 

-8 
14 

45 

0 
0 
2 
0 
0 
0 

-8 
2 
0 
4 

a The basis determinant \ijk\m\ is written ik. b Numbering as 

follows 2( 

fourth-step neutral determinant can be reached by a cyclic 
movement using four segments, as it was shown in section III.l. 

As a more general result a fragment will contribute to «th order 
if, containing «, segments belonging to cycles and /J2 that do not, 
one has the relation 

H1 + 2n2 < n 

In the sixth order, the possible fragments are those of fourth order 
and 

A O 
The effective Hamiltonian Hn of a particular molecule is then 
obtained without any calculation as soon as one finds all the 
fragments belonging to it, by adding the different effective 
Hamiltonians h„t corresponding to the fragment i; the subscript 
s means that in the calculation of the matrix element (I]H]J) the 
fragment ;' has a spin eigenvalue 

S1. = 5 

The Hamiltonians h^ are calculated once for all and do not depend 
on the rest of the molecule. 

Table II. Sixth-Order Cyclic Operators 

(4) A Kit Hamiltonian. The effective iV-electron Hamiltonian 
at order n will consist of two-body, three-body, ..., and /V-body 
terms. We shall give all fourth-order terms and the main (cyclic) 
sixth-order terms. In order to simplify the results, one may benefit 
from the following theorem. 

Theorem: at each order the sum of the terms of a column (or 
row) of the effective operator is zero. 

Proof: the determinant where all spins are parallel (S2 = N/2) 
is an eigenfunction and its eigenvalue is zero at each order. The 
Sz = 0 matrix contains a component of this multiplet (as well as 
the other S2 = 1,2, ... matrices). It is well-known that for a 
TV-open-shell configuration, the coefficients of the S2 = 0 highest 
multiplet on the various determinants are all equal to TV"1/2. Then 
by writing the eigenequation at the «th order 

r ~| 
Hn

M 
ri "1 

i 
i 

i J 

= 0 
ri "i 

i 
i 

Li J 

implies that the sum of the terms of each line is zero in H„tlf. Since 
this is true for each order, it is true for the nth-order correction 
(QED). 

A direct consequence is that it is sufficient to consider the 
off-diagonal contributions to each order, the diagonal contribution 
being equal to the sum of the off-diagonal contributions with a 
changed sign. The fourth (and main sixth) order off-diagonal 
terms will be given in a second quantization language as effective 
many-body operators. 

For a further simplification, one may assume that all the 
monoionic determinants have the same energy AE, all the dionic 
determinants have the energy 2AE, etc. This assumption allows 
factorizations over various processes going through different 
nonadjacent monoionic or multiionic determinants, and the sum
mation over the various perturbative paths at a given order is 
simply expressed then by an integer number. This new simpli
fication is by no means necessary, and actual calculations might 
be performed by using various energies for the intermediate states 
according to the topology 

Three Types of (S2 = 0) Spin Configurations0 

123 
124 
135 

123 
124 
135 

123 

-24 

234 

12 
-30 
0 

124 

40 
-24 

235 

-30 
112 
40 

125 

-30 
40 

236 

0 
-140 
-140 

126 

12 
-30 

245 

0 
-30 

-140 

134 

-30 
40 

246 

0 
40 
504 

135 

40 
-140 
-24 

256 

0 
0 

-140 

136 

-30 
112 
40 

345 

0 
0 
20 

145 

0 
40 
40 

346 

0 
0 

-140 

146 

0 
-30 

-140 

356 

0 
0 
40 

156 

0 
0 
40 

456 

0 
0 
0 

Three Types of (S2 = 1) Spin Configurations 

12 13 14 15 16 23 24 25 26 34 35 36 45 46 56 
12 
13 
14 

16 -30 
16 

40 
-30 
16 

-30 
40 

-30 

12 
-30 
40 

12 
-30 
0 

-30 
112 
-30 

40 
-140 
112 

-30 
112 

-140 

0 
-30 
40 

0 
40 

-140 

0 
-30 
112 

0 
0 
40 

0 
0 

-30 

0 
0 
0 

1 

1 

-4 

One Line is Sufficient to Build the (S2 = 2) Complete Matrix 

2 3 4 

12 -30 40 

5 

-30 

6 

12 

° Characteristic values in terms of F 1 2 F 2 3 F 3 4 F 4 5 F 5 6 F 6 1 / A F 5 = F6MF= 
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C- x'\ 
j&E 

charge separation 

E(A+C") * E(A+B') 

and charge repartition 

£(A+B"C+D-) ^ £(A+B-C"D+) 

Our supplementary simplification may be viewed as the use of 
an Hubbard23 Hamiltonian 

H = lZh a+aq + "Lgppa
 +a +apa Pp** P M/7 w p M p (13) 

which takes only into account the repulsion of an electron pair 
on the same center, instead of the Pariser-Parr-Pople Hamilto
nian. 

The second-order off-diagonal terms are effective exchange 
operators 

F-2 

1J 
2—(Q1

+Oj+Q1 a-j + Q1
+af Ci1CIj) 

(if / and j are bonded in the tight-binding hypothesis). As 
mentioned previously the odd order terms are zero; the fourth order 
off-diagonal terms already mentioned are concerned with either 
two-body fragments through a 1-2 exchange operator (going 
through neutral states) 

(SFy*/AE3XaI+OfOiUj + O1
+Oj+O1O1) 

which should be added to the second-order term 2F1//AE (the 
corresponding sixth-order term is +64F1J

6ZAE2, illustrating the 
sign alternation of the various orders), three-body linear fragments 
through a 1-3 exchange operator 

Kjk = (\Z2FjFjk
2/AE*)(a? af aiak + O1

+^+O1O,) 
j 

where in the tight-binding hypothesis j must be bonded to both 
;' and k 

-L-
(one should notice that this effective integral is independent of 
the relative orientation of the two adjacent bonds), or cyclic 
four-body fragments (with Sz = 0 or ±1 on the fragment), im
plying circulation of the electrons on the ring. For Sz = 0, one 
gets three cyclic operators 

(i) (8FijFjkFk,F,i/AE})(ai
+aj

+ai:
+iifatajaicai + inverse) 

which may be represented as 

D)(D 
• •/ 

where the dots represent /3 spins, 

(ii) -(12F4/AE3) 

(iii)(40F4/AE3) 

for a double-spin permutation, which is by far the largest 
fourth-order term 

(23) J. Hubbard, Proc. R. Soc, London, Ser. A, 276, 283 (1963). 
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For S1 = 1, there exist only two operators 

D D (SF* IAK3) 

(r-UF^I&E*) 

The cyclic operators must be added to the linear fragment op
erators. As an example Table I gives the total fourth-order 
Hamiltonian of the methylenecyclobutadiene molecule, in F4ZAE3 

units. For a better understanding, one may expand the calculation 
of one of the matrix elements (corresponding to a 2-4 exchange) 
from the relevant fragments, namely, the < 12345|//] 12345 > matrix 
element; there is no one-bond correction; there are two two-bond 

contributions (through 234 and 214), each of them equal to 
2F*/ AE3, and one cyclic four-bond contribution equal to ^F4/AE3, 
resulting in a total matrix element of 12F4IAE3. 

The sixth-order cyclic contributions are numerous and reported 
in compact form in the Appendix and Table II. As in the case 
for the four-membered ring the largest off-diagonal matrix element 
is concerned with the simultaneous spin permutations 

504FVAf5 

The role of these cyclic terms will be discussed in the following 
paper. Using the fourth-order terms and the cyclic sixth-order 
terms allows the treatment of most conjugate compounds. 

IV. Conclusion 
The effective valence bond (EVB) Hamiltonian proposed in the 

present work allows a drastic shortcut in the size problem of VB 
techniques, since it is restricted to the neutral configurations, the 
effect of the ionic configurations being included by perturbation 
and resulting in a set of very simple topological rules. The 
fourth-order terms derived from the study of three-atom systems 

and four membered rings are transferable in larger compounds; 
adding the aromatic sixth-order effects in benzenic rings allows 
for treatment most of the conjugated molecules through the di-
agonalization of reasonable matrices, the matrix elements of which 
are transferable. Several neutral states are then obtained to the 
same level of accuracy. The N consistency problem is avoided 
since the background for the theory is perturbative. One must 
notice that, in an early work, Bulaevskii24 developed the same ideas 
of quasi-degenerate perturbation theory as Brandow and thought 
of a specific application to the "homopolar" (i.e., neutral) states 
of conjugated hydrocarbons but did not perform any application. 

The problem of the role of the a core on the 7r-electron states, 
which was the main purpose of previous applications,3 of Brandow's 
formalism was not considered there. The instantaneous polari
zation of the core would lower the energy of the ionic configu
rations and might be included in the perturbation expansion. The 
AE value must be considered as lowered by this <77r correlation 
effect, which the reduction of the monocentric bielectronic integral 
in the PPP models tries to reproduce. The inclusion of the core 
effects on our effective VB model will be discussed later on. 

Of course the matrix elements of the EVB effective Hamiltonian 
in such a basis are essentially effective exchange terms, reflecting 
movements of electrons on the skeleton through ionic charge-

(24) L. N. Bulaevskii, Zh. Eksp. Teor. Fiz., 51, 230 (1966) (english ed
ition, 24, 154 (1967)). 



J. Am. Chem. Soc. 1982, 104, 3029-3034 3029 

transfer states which never appear explicitly. For equal bond 
lengths, the second-order level introduces a single parameter and 
allows a topologically determined Heisenberg Hamiltonian. This 
effective exchange term simply reproduces the coupling through 
singly ionic adjacent charge-transfer states. As will be shown in 
the following paper, this crude model is able to reproduce the exact 
ordering of lowest singlet-triplet states for a large series of hy
drocarbons, even in nearly degenerate situations. It offers a 
rationalization of the prefered multiplicity in cyclobutadiene and 
of the m* = m0 + 2 rule. 

The recurrence equations (eq 9) allow one to go to higher orders. 
The convergence of this QDMBPT approach for the proposed 
partition of the VB matrix has been assumed throughout and will 
be discussed in view of the numberical results in the following 
paper. Despite the bielectronic nature of the zeroth-order Ham
iltonian, the unlinked contributions vanish and the perturbation 
expansion produces some effective operators characterizing (i) 
connected fragments of the molecule, (ii) an S, value on the 
considered fragment, and (iii) a definite spin exchange on this 
fragment. If the Hamiltonian of the problem is simplified to the 
Hubbard scheme, these high order contributions simply introduce 

In the preceding paper,1 a IT valence bond effective Hamiltonian 
formalism has been defined. In this approach, the neutral de
terminants of the VB basis set are the only ones to appear ex
plicitly, the others (i.e., the ionic ones) being taken into account 
by a quasi-degenerate many-body perturbation technique.2 A 
recurrence equation gives the expression of the effective Ham
iltonian H„ at nth order. The unlinked cluster cancellations allow 
a very important shortcut in the calculation of the operator Hn, 
since a given molecule may be constructed as a "kit" from primitive 
fragments. For these fragments/with a total S2 = s, the effective 
operators hn are calculated once for all, and the most important 
ones have been given. 

This paper proposes to apply this formalism to some typical 
problems. It shows that second-order perturbation is sufficient 
to determine the spin multiplicity preference, while quantitative 
agreement with full CI is obtained for the lowest state energies 
as soon as higher order terms are introduced. Surprisingly enough 
the model reproduces the total energies, despite the use of only 
two parameters. Part 3 presents some simple theoretical appli
cations of this model: it gives a demonstration of the aromaticity 

(1) J. P. Malrieu and D. Maynau, preceding paper in this issue. 
(2) J. H. Van VIeck, Phys. Rev., 33, 467 (1929); J. des Cloiseaux, Nucl. 

Phys., 20, 321 (1960); B. H. Brandow, Rev. Mod. Phys., 39, 771 (1967); G. 
Hose and U. Kaldor, J. Phys. B, 12, 3827 (1979); I. Shavitt and T. Redmon, 
J. Chem. Phys., 73, 5711 (1980). 

a second parameter, namely, the ratio X = Fj A£. 
The fourth-order analysis exhibits as the largest effect a 

four-body operator performing a cyclic double-spin permutations 
on four-membered rings. Analogous six-body cyclic exchange 
operators for benzene-type rings dominate the sixth-order con
tributions. The fourth- and sixth-order contributions may be 
expressed in terms of products of integers by X4 or X6 (in g units). 
The model proposed in this paper appears as a very attractive tool 
since it produces VBCI-types matrices of reasonable size, using 
two parameters only, which are directly determined by the to
pology. Its numerical and interpretative power will be illustrated 
in the following paper. It may be generalized in two directions: 
(i) to ionic excited states of hydrocarbons and to their positive 
and negative ions; (ii) to clusters of metal atoms where each atom 
contributes only one s electron, as relevant, for instance, in clusters 
of alkaline atoms. 

IV. Appendix. Sixth-Order Cyclic Operators 

The cyclic sixth-order operators may be written in a compact 
form through a matrix formulation for th various Sz values (Table 
II). 

rule for cyclic compounds and makes evident the existence and 
the importance of the role of ring currents. The convergence 
problem is discussed. The resulting description of the electronic 
assembly as governed by partial spin ordering and collective 
movements is exemplified. 

I. Second-Order Results and Qualitative Implications. The 
Spin Multiplicity Preference 

As previously noted, our effective Hamiltonian is a magnetic 
or Heisenberg-type Hamiltonian, and it should essentially predict 
the spin multiplicity of the lowest states. Dohnert and Koutecky3 

recently calculated the lowest eigenvalues of the full -K CI matrix 
for a series of conjugated hydrocarbons, assuming a Pariser-
Parr-Pople Hamiltonian. Table I reproduces their calculated 
values (column 1) for 20 significant molecules, which may be 
compared with our second-order values (column 2). The zero 
energy is different in both methods (our zero is the highest 
multiplicity eigenstate of the molecule; it corresponds to a situation 
in which each atom bears a frozen electron of a spin while the 
PPP energy is taken from separated atoms), and the most relevant 
comparison is concerned with the singlet-triplet separation. One 
may notice that our second-order Hamiltonian always gives the 
correct singlet-triplet ordering, even when these states are nearly 

(3) D. Dohnert and J. Koutecky, J. Am. Chem. Soc, 102, 1789 (1980). 
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